- Codazzi equations
- Математика: уравнения Кодацци
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Gauss–Codazzi equations — In Riemannian geometry, the Gauss–Codazzi–Mainardi equations are fundamental equations in the theory of embedded hypersurfaces in a Euclidean space, and more generally submanifolds of Riemannian manifolds. They also have applications for embedded … Wikipedia
Gauss-Codazzi equations (relativity) — The Gauss–Codazzi equations are the following collection of equations which relate the 4 dimensional Riemann tensor R {abcd}, Ricci tensor R {ab} and Ricci scalar R to their projection onto a 3 dimensional hypersurface embedded within 4… … Wikipedia
Equations de Gauss-Codazzii — Équations de Gauss Codazzii En géométrie riemannienne, les équations de Gauss Codazzi Mainardi sont des équations fondamentales dans le cadre de la théorie des hypersurfaces plongées dans un espace euclidien, et plus généralement des sous… … Wikipédia en Français
Équations de Gauss-Codazzii — En géométrie riemannienne, les équations de Gauss Codazzi Mainardi sont des équations fondamentales dans le cadre de la théorie des hypersurfaces plongées dans un espace euclidien, et plus généralement des sous variétés d une variété riemannienne … Wikipédia en Français
Équations de gauss-codazzii — En géométrie riemannienne, les équations de Gauss Codazzi Mainardi sont des équations fondamentales dans le cadre de la théorie des hypersurfaces plongées dans un espace euclidien, et plus généralement des sous variétés d une variété riemannienne … Wikipédia en Français
Équations de Gauss-Codazzi — En géométrie riemannienne, les équations de Gauss Codazzi Mainardi sont des équations fondamentales dans le cadre de la théorie des hypersurfaces plongées dans un espace euclidien, et plus généralement des sous variétés d une variété riemannienne … Wikipédia en Français
Delfino Codazzi — (March 7, 1824 – July 21, 1873) was an Italian mathematician. He made some important contributions to the differential geometry of surfaces, such as the Gauss–Codazzi–Mainardi equations. External links O Connor, John J.; Robertson, Edmund F.,… … Wikipedia
List of nonlinear partial differential equations — In mathematics and physics, nonlinear partial differential equations are (as their name suggests) partial differential equations with nonlinear terms. They describe many different physical systems, ranging from gravitation to fluid dynamics, and… … Wikipedia
Delfino Codazzi — Pour les articles homonymes, voir Codazzi. Delfino Codazzi (né le 7 mars 1824 à Lodi, en Lombardie, alors dans le Royaume lombard vénitien et mort le 21 juillet 1873 à Pavie) est un mathématicien italien du XIXe siècle … Wikipédia en Français
Darboux frame — In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non umbilic point of a surface … Wikipedia
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia